Adjuvant Therapy With Anti-VEGF for DME, RVO & nAMD: A

UNIVERSITY OF CALGARY

Systematic Review

UNIVERSITY OF CALGARY kareem.sadek@ucalgary.ca

Kareem Sadek¹, Salem Abu Al-Burak², Philip Yu³, Brendan K Tao³, Rahma Osman⁴, Eduardo Navajas⁵

Ophthalmology & Visual 1. Cumming School of Medicine, University of Calgary, 2. Schulich School of Medicine, University of Western Ontario, 3. Faculty of Medicine, University of British Columbia, 4. Queen's School of Medicine, Queen's University, 5. Department of Ophthalmology Sciences Research Day 2025

Introduction

- Anti-VEGF revolutionised DME, RVO & nAMD -> 85% dry macula at 12 months1
- Yet 7-9 injections/eye/year → travel burden, lost productivity, clinic load²
- Real-world registries: ≥ 20% lose ≥ 10 letters by 24 months → undertreatment³
- 10-40 % of eyes show persistent OCT fluid despite monthly dosing4
- Rationale for aqueous-suppressants (topical CAIs ± \(\beta\)-blockers)
 - ↓ agueous humour turnover → ↑ intravitreal dwell-time of biologics5
 - Cheap, widely available, minimal systemic risk⁶
- Emerging adjunct options: NSAIDs, subthreshold micropulse laser (SML), nutraceuticals 7,8
- Prior small RCTs/RCS: mixed BCVA results; several show faster CMT/CRT regression or modest injection-sparing⁹
- Aim of review summarise clinical impact of anti-VEGF + aqueous-suppressant vs monotherapy on:
 - Retinal thickness (µm) & fluid resolution
 - Best-corrected visual acuity (BCVA, logMAR/letters)
 - Injection frequency / interval extension

Results Bromfenac 0 1 % BID v enac 0.09 % BI dies assessed for eligibility (n = 84 m none PO (≥3 m dies included in review (n = 27) Figure 1. PRISMA Flow Diagram of the Study Selection Process Figure 2. Summary of Clinical Studies of Adjunctive Therapies with Intravitreal

Anti-VEGF injections, organized by underlying retinal disease and framed by bold borders around each adjuvant class

1. Diabetic Macular Edema

- Aqueous suppressants

 faster OCT drying, modest injection-sparing, no extra VA gain
- NSAIDs → small thickness drop, no lasting VA or interval benefit

2. Neovascular AMD

3.06 vs 3.26

22 ue 22

- Aqueous suppressants → mild extra thinning, a few injections saved, minimal VA change
- NSAIDs & orals → inconsistent anatomical gains, no dear VA or burden relief

3. RVO-Related Edema

- Aqueous suppressants → strong extra thinning, ~1 fewer injection, slight VA lift
- · NSAIDs → pronounced thinning in BRVO, no reliable VA or interval effect

Methods

- Databases Searched: MEDLINE. Cochrane Central Web of Science, and Embase.
- Primary Outcomes: ΔCMT/CRT/CST/CFT, ΔBCVA, injections (#/12 mo), fluid-free interval, IOP change
- Synthesis: Narrative + disease-specific summary tables (no pooled meta because heterogeneity)

In clusio n Criteria	Adult (≥18y) patients with DME, RVO (CRVO/BRVO/HRVO), or n AMD Comparative studies of anti-VEGF monother apy vs anti-VEGF+ad junct (CAE/β-blockers, NSAIDs, SML, nutraceuticals) Report s≥1 key outcome: B CVA change, OCT thickness (CMT/CST/CFT/CRT), or injection burden (frequency/du ration) Minimum follow-up≥1 mont hin R CTs or prospective/re trospective comparative cohorts
Exclusion Criteria	Non-human or pediatric studies; non-English publications Case reports/Series (<5 eyes), reviews, meta-analyses, or abstracts without full text Combined anti-VEGF with other surgical procedures (e.g. vitrectomy, conventional laser) Follow-up<1 monthor missing all prespecified functional/anatomical outcomes

Discussion

- Adjunct reduces thickness faster (esp. CAIs in early DME & RVO)
- Sustained VA benefit not demonstrated in any disease cohort
- Injection-sparing signal modest:
 - Nutraceutical AMD (-2 injections / 24 mo)
- Likely ceiling effect: After VEGF suppression, further drying ≠ visual recovery
- Safety:
 - Topical CAIs well-tolerated
 - Steroids ↑ IOP & cataract
 - NSAIDs occasional keratitis
- Clinical use: consider CAI drops or SML in eves needing dryer retina / fewer visits but counsel regarding limited VA upside

Conclusions

- · Anti-VEGF monotherapy remains the visual driver; adjuncts offer incremental anatomical or burden relief.
- Topical CAIs/β-blockers: strongest short-term drying effect; consider in refractory fluid.
- No current adjunct consistently improves BCVA; future combo-molecule or sustained-release strategies might.
- Clinical implication: Adjuncts can be considered in refractory fluid cases for faster OCT resolution and slight burden relief.

References

Acknowledgements

Special thanks to Philip and Salem for their guidance and allowing me to cor project. We also extend ou e to ` Ophthalmology & Visual So Regear h Day 2025 for the opportunity to sent this work. Finally, we acknowledge the authors of the studies included in this systematic review for their original research and data.