
Analyzing clinical variables indicative of uveal melanoma to determine how they affect 

decisions made from an artificial intelligence classifier

Introduction

• Choroidal nevus (CN): an intraocular melanocytic 

lesion with malignant potential 

• Uveal melanoma (UM): can develop from a CN, 

most common primary intraocular cancer in adults

• 45% mortality rate within 15 years of UM diagnosis1

Methods

Considerations
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Objective

To determine if there are certain features associated with the lesion that 

cause the AI model misclassify an image as FN.

Figure 1: Fundus image of UM

• Early detection → earlier referral for treatment

• Fundus images → used to train artificial intelligence (AI) model to detect 

presence of lesion → mechanize skill set of ocular oncologists → faster 

detection, better prognosis 

Problem: AI can generate false negative (FN) diagnoses, particularly 

from fundus images

FN: to not detect the presence of a lesion when one is present in the 

image → problematic

Dataset

• Fundus images labeled “lesion present”, “lesion absent”

• Collected from Alberta Ocular Brachytherapy Program in Edmonton, AB 

• Abstracted charts from patient EMR and fundus images

Model

• Transfer learning pre-trained model

• Test on eye lesions

Statistical Analysis

To determine if there are any statistically significant relationships 

between variables and the outcome of the AI classification.

• Univariate Logistic Regression - determine the individual effect of each 

variable on image classification

• Multivariate Logistic Regression - determine the combined effect of 

variables on image classification

Discussion
Strengths

• Uses real-world data → generalizability

• Contributes to AI interpretability → patient/physician trust in AI 

Limitations

• Small sample size 

• Uses early iteration of model 

Future Directions

• Increase sample size and test on future iterations of model

• Test of fundus images from other eye care centers → account for other 

methods of taking fundus images

• Detecting lesions → differentiating between CN and UM

Non- or variable 

pigmentation → FN
Absence of drusen → FN 

If non-pigmented: lacks 

melanin → blends into 

background, harder for 

model to locate

Smaller lesion →

harder for model to 

locate

Drusen: protein deposits 

from degraded 

photoreceptors, manifests 

as discrete white build-up 

→ useful factor for model 

to identify a lesion

Smaller diameter → FN
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Implications of AI image diagnosis usage in clinic

• Physicians’ prediction accuracy improves when working with 

classification model2 → future iterations of our model could be a helpful 

tool to streamline diagnostic process

• Sensitivity may decrease2 → physicians over-rely on AI predictions →

training on proper use of AI in clinic needed

Contribution to AI interpretability
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image of 
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Output

• Gives insight on how model is making decisions, black box → glass box

Black box phenomenon

• Which variables associated with lesion contribute to misdiagnosis 
• Increases patient/physician trust in AI

• Provides information on how to improve model → training sets for 

future iterations must include small lesions, non-pigmented lesions, 

lesions without drusen

Table 1: Descriptive statistics of variables collected from the dataset (n = 183)

Results

TP TN FP FN

148, 41%

103, 28%

78, 21%

35, 10%

Figure 2: Count of images classified by the model

Variable Estimate (SE) P-value

Age 0.029 (0.018) 0.098

Location 0.021 (0.474) 0.965

Diameter -0.248 (0.124) 0.047

Subretinal fluid 1.531 (0.856) 0.074

Drusen -1.245 (0.521) 0.017

Pigmentation 2.827 (0.526) >0.001

Table 3: Multivariate logistic regression of AI classification and collected variables. Variables 

that scored a p-value <0.1 from the univariate logistic regression were included. Variables that 

scored a p-value <0.05 are in red.

Demographics Clinical features of lesion

Mean age (SD) in years 62.5 (14.6) Localization of epicentre Macula: 65 

(35.5%)

Peripheral: 118 

(64.5%)

Sex Male: 58 

(31.7%)

Female: 125 

(68.3%)

Largest diameter (SD) in mm 3.7 (2.4)

Study eye Right: 84 

(45.9%)

Left: 99 

(54.1%)

Thickness (SD) in mm 1.6 (0.2)

Visual acuity (SD) 30 (16.8) Presence of orange pigment Yes: 14 (7.7%) No: 169 (92.3%)

Presence of subretinal fluid Yes: 10 (5.5%) No: 173 (94.5%)

Presence of drusen Yes: 90 (49.2%) No: 93 (51.8%)

Hollow Yes: 4 (2.2%) No: 179 (97.8%)

If lesion is 100% visible in image Yes: 179 (97.8%) No: 179 (97.8%)

Fully pigmented Yes: 147 (80%) No: 36 (20%)

AI classification TP: 148 (81%) FN: 35 (19%)

Variable Estimate (SE) P-value

Sex 0.015 (0.405) 0.97

Study eye 0.009 (0.377) 0.98

Age 0.026 (0.015) 0.084

Location 0.677 (0.381) 0.076

Diameter -0.227 (0.0999) 0.023

Thickness -0.724 (1.049) 0.49

Orange pigment -0.376 (0.788) 0.634

Subretinal fluid 1.116 (0.625) 0.098

Drusen -0.916 (0.310) 0.022

Hollowness -15.152 (1199.77) 0.99

100% visibility 15.15 (1199.77) 0.99

Pigmentation 2.398 (0.432) >0.001

Table 2: Univariate logistic regression of AI classification and collected variables. Variables 

that scored a p-value <0.1 are in blue and variables that scored a p-value <0.05 are in red. 


