Analyzing clinical variables indicative of uveal melanoma to determine how they affect decisions made from an artificial intelligence classifier

Emily A. Laycock;¹ Ezekiel Weis, MD, MPH;¹ Trafford Crump, PhD^{1,2} 1. University of Calgary Cumming School of Medicine; 2. University of Calgary Schulich School of Engineering

Introduction

- Choroidal nevus (CN): an intraocular melanocytic lesion with malignant potential
- Uveal melanoma (UM): can develop from a CN,
- most common primary intraocular cancer in adults
- 45% mortality rate within 15 years of UM diagnosis¹

- Early detection \rightarrow earlier referral for treatment
- Fundus images \rightarrow used to train artificial intelligence (AI) model to detect presence of lesion \rightarrow mechanize skill set of ocular oncologists \rightarrow faster detection, better prognosis

<u>Problem</u>: AI can generate false negative (FN) diagnoses, particularly from fundus images

FN: to not detect the presence of a lesion when one is present in the image \rightarrow problematic

Objective

To determine if there are certain features associated with the lesion that cause the AI model misclassify an image as FN.

Methods

Model

- Transfer learning pre-trained model
- Test on eye lesions

Dataset

- Fundus images labeled "lesion present", "lesion absent"
- Collected from Alberta Ocular Brachytherapy Program in Edmonton, AB
- Abstracted charts from patient EMR and fundus images

Statistical Analysis

To determine if there are any statistically significant relationships between variables and the outcome of the AI classification.

- Univariate Logistic Regression determine the individual effect of each variable on image classification
- Multivariate Logistic Regression determine the combined effect of variables on image classification

 $\blacksquare TP \blacksquare TN \blacksquare FP \blacksquare FN$

Demographics			Clinical features of lesion		
Mean age (SD) in years	62.5 (14.6)		Localization of epicentre	Macula: 65 (35.5%) (Peripheral: 118 64.5%)
Sex	Male: 58 (31.7%)	Female: 125 (68.3%)	Largest diameter (SD) in mm	3.7 (2.4)	
Study eye	Right: 84 (45.9%)	Left: 99 (54.1%)	Thickness (SD) in mm	1.6 (0.2)	
Visual acuity (SD) 30 (16.8)			Presence of orange pigment	Yes: 14 (7.7%)	No: 169 (92.3%)
			Presence of subretinal fluid	Yes: 10 (5.5%)	No: 173 (94.5%)
			Presence of drusen	Yes: 90 (49.2%)	No: 93 (51.8%)
			Hollow	Yes: 4 (2.2%)	No: 179 (97.8%)
			If lesion is 100% visible in image	Yes: 179 (97.8%)	No: 179 (97.8%)
			Fully pigmented	Yes: 147 (80%)	No: 36 (20%)
			AI classification	TP: 148 (81%)	FN: 35 (19%)

Table 1: Descriptive statistics of variables collected from the dataset (n = 183)

Variable	Estimate (SE)	P-value
Sex	0.015 (0.405)	0.97
Study eye	0.009 (0.377)	0.98
Age	0.026 (0.015)	0.084
Location	0.677 (0.381)	0.076
Diameter	-0.227 (0.0999)	0.023
Thickness	-0.724 (1.049)	0.49
Orange pigment	-0.376 (0.788)	0.634
Subretinal fluid	1.116 (0.625)	0.098
Drusen	-0.916 (0.310)	0.022
Hollowness	-15.152 (1199.77)	0.99
100% visibility	15.15 (1199.77)	0.99
Pigmentation	2.398 (0.432)	>0.001

Table 2: Univariate logistic regression of AI classification and collected variables. Variables that scored a p-value <0.1 are in blue and variables that scored a p-value <0.05 are in red.

Variable	Estimate (SE)	P-value
Age	0.029 (0.018)	0.098
Location	0.021 (0.474)	0.965
Diameter	-0.248 (0.124)	0.047
Subretinal fluid	1.531 (0.856)	0.074
Drusen	-1.245 (0.521)	0.017
Pigmentation	2.827 (0.526)	>0.001

Table 3: Multivariate logistic regression of AI classification and collected variables. Variables that scored a p-value <0.1 from the univariate logistic regression were included. Variables that scored a p-value <0.05 are in red.

Discussion

If non-pigmented: lacks melanin \rightarrow blends into background, harder for model to locate

Implications of AI image diagnosis usage in clinic

- tool to streamline diagnostic process

Contribution to AI interpretability

- Increases patient/physician trust in AI
- lesions without drusen

Future Directions

- methods of taking fundus images

References

- Feb;23(1):e57-64.
- Med Biol. 2020;1213:3-21

For further information contact Emily Laycock at emily.laycock1@ucalgary.ca Funding provided by VPR Catalyst Grant

• Physicians' prediction accuracy improves when working with classification model² \rightarrow future iterations of our model could be a helpful

Sensitivity may decrease² \rightarrow physicians over-rely on AI predictions \rightarrow training on proper use of AI in clinic needed

• Gives insight on how model is making decisions, black box \rightarrow glass box • Which variables associated with lesion contribute to misdiagnosis

• Provides information on how to improve model \rightarrow training sets for future iterations must include small lesions, non-pigmented lesions,

Black box phenomenon

• Increase sample size and test on future iterations of model Test of fundus images from other eye care centers \rightarrow account for other • Detecting lesions \rightarrow differentiating between CN and UM

1. Weis E, Salopek TG, McKinnon JG, Larocque MP, Temple-Oberle C, Cheng T, et al. Management of uveal melanoma: a consensus-based provincial clinical practice guideline. Curr Oncol. 2016

2. Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep Learning in Medical Image Analysis. Adv Exp