

Mohamed Bondok BASc¹, Abdullah Al-Ani MD PhD², Patrick Gooi MD FRCSC² ¹Department of Undergraduate Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB Canada ²Department of Surgery, Section of Ophthalmology, University of Calgary, Calgary, AB Canada

 Background: Cataracts are the leading cause of blindness Cataract surgery is challenging and difficult Training models are largely restricted to cad (wet lab) and virtual reality, access to which by both cost and available facilities 					
Strategy	Pros				
Virtual Reality Total Studies: 36	 Performance metrics Repeatable & engaging 	 Cost lin Physica			
Wet Lab Total Studies: 19	 Easily accessible Provides physical feedback 	Long seLimited			
Dry Lab Total Studies: 2	 Lower cost & easy access Easy set-up for practice 	ChallerFidelity			

Purpose:

Support underfunded training programs through development of a low-cost, accessible and sustainable lens and eye module for simulation of cataract surgery

Materials and Methods:

- Literature search (PubMed, Embase, Metadex) of lens mechanical properties (Young's/Elastic Modulus, Shear Modulus, Bulk Modulus, Hardness, Toughness)
- Evaluate novel materials for lens simulation using the following criteria: (1) Cost < 1\$/lens; (2) access in-store or online (3) total preparation time < 10 minutes
- Materials meeting criteria were tested for content validity
- The compatible cataract simulator prototype was designed in Fusion 360 and 3D printed using the Anycubic i3 Mega X

Identification

Formulation

X

Screening

Accessible materials for simulating cataract surgery: Development of a sustainable phacoemulsification training module using agarose and gelatin

worldwide t to simulate daveric eyes are limited

Strategies

Cons

mits access al side effects

et-up time d Shelf-life

nging to design y may be variable

Results:

Table 2. Materials Evaluation For Lens (N = 20)

Material

Gelatin Agarose Calcium Alginate Silicone Resin Polypropylene Pellet Fluorinated Ethylene Propyl Ultra High Molecular Weight Poly Polycaprolactone High Density Polyethylen Low-Density Polyethylene Polyvinyl Alcohol Polyvinyl Chloride, Powde Polymethylpentene Ethylene Vinyl Acetate PDMS Silicone Encapso-k Polyacrylamide Resin Cellulose Acetate Butyrate Polytetrafluoroethylene Cellulose Propionate

Conclusions:

- **Both materials are reusable and biodegradable**

Based on published literature, a total of 10 research articles were identified which provided the Young's modulus of the lens. The value ranged between 0.8 x 10⁻⁶ GPa and 5 x 10⁻¹ GPa based on the age and extent of the cataract formation

	Cost per Lens	Accessibility	Prep Time < 10 mins	Biodegradable *
	\$0.08	Online & Retail		Yes
	\$0.24	Online - General		Yes
	\$0.06	Online - General	X	Yes
	\$0.06	Online - General	X	No
	\$0.01	Online - General	X	No
ne	\$0.02	Online - Specialty	X	No
ethylene	\$0.04	Online - General	X	No
·	\$0.55	Online - Specialty	X	Yes
	\$0.02	Online - General	X	No
	\$0.03	Online - Specialty	X	No
	\$0.15	Online - General	X	Yes
•	\$0.24	Online - Specialty	X	No
	\$0.20	Online - Specialty	X	No
	\$0.02	Online - General	X	No
	\$0.05	Online - General	X	No
	\$0.06	Online - Specialty	X	No
	\$0.25	Online - Specialty	X	No
	\$0.40	Online - Specialty	X	Yes
	\$0.26	Online - Specialty		No
	\$1.20	Online - Specialty	X	Yes
	ment or that the degradation products w	Il not have any negative impacts		

Fig 3. Fusion 360 Model

This work identified agarose and gelatin as low-cost and accessible materials to simulate cataract surgery

Future analysis will include broader testing by Ophthalmology trainees across Canada

Fig 4. Other Lens Material

