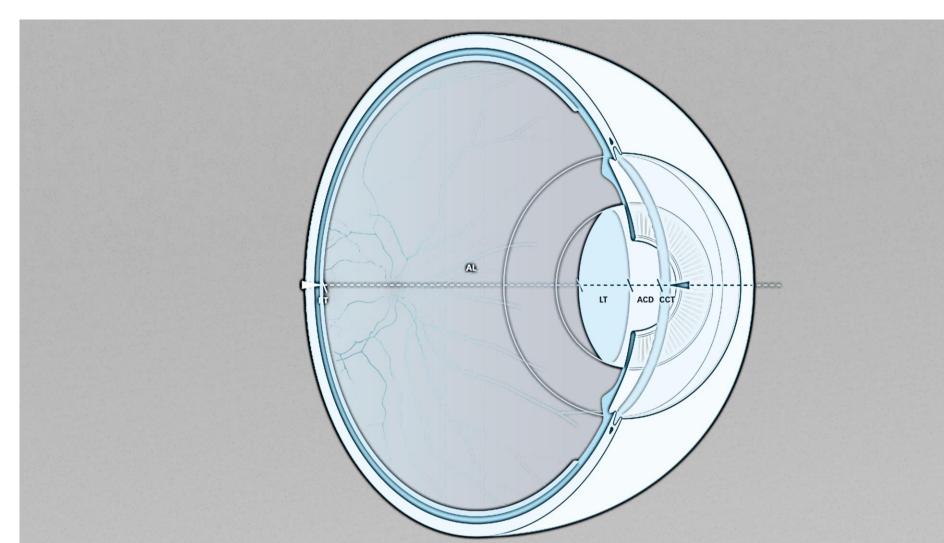


Refractive outcomes of Implantable Collamer Lens (ICL) surgery based on the Lenstar LS900[®] keratometer


Michael Penny ¹, Alison Harapiak ², Alison Maddigan ², Jamie Bhamra ³

¹Cumming School of Medicine, University of Calgary

Background and Purpose

- Surgical planning for implantable collamer lens (ICL) surgery relies on a keratometer which provides precise measurements of the anterior corneal curvature for accurate selection of lens power and astigmatism.
- The main source of error when using toric intraocular lenses is often due to imprecise preoperative measurements of corneal curvature, especially in eyes with low astigmatism.¹

Image 1 – Eye cross section with biometric measurements ²

 This study is a retrospective chart review assessing clinical outcomes of patients undergoing ICL surgery with utilization of the Lenstar LS900[®] (Lenstar LS 900, HAAG-STREIT AG, Switzerland) keratometer for ICL calculations.

Methods

- Twenty-six eyes of thirteen patients underwent ICL surgery between May 2019 and January 2021, with surgical planning and lens selection calculations based on Lenstar keratometry measurements.
- Patient baseline characteristics, visual acuity, refractive data, and corneal measurements were recorded preoperatively and at the 2-week postoperative follow up visit.

Results

Baseline characteristics	
Number of eyes, n	26
Number of patients, n	13
Age (years), mean (SD)	35.3(5.04)
Female, n (%)	7(53.85%)
Spherical ICL, n (%)	6(23.08%)
Toric ICL, n (%)	20(76.92%)
Baseline refractive SEQ (diopters), mean (SD)	-7.48(3.8)
Baseline UCVA (logMAR), mean (SD)	1.82(1.64)
Pre-op central ACD (mm), mean (SD)	3.25(0.31)
Pre-op corneal thickness (mm), mean (SD)	0.534(0.05)
Pre-op White to White (mm), mean (SD)	11.62(0.36)

Figure 1 — Baseline characteristics of included patients. SD = standard deviation; SEQ = Spherical equivalent; logMAR = Logarithm of the Minimum Angle of Resolution; UCVA = uncorrected visual acuity; ACD = Anterior chamber depth

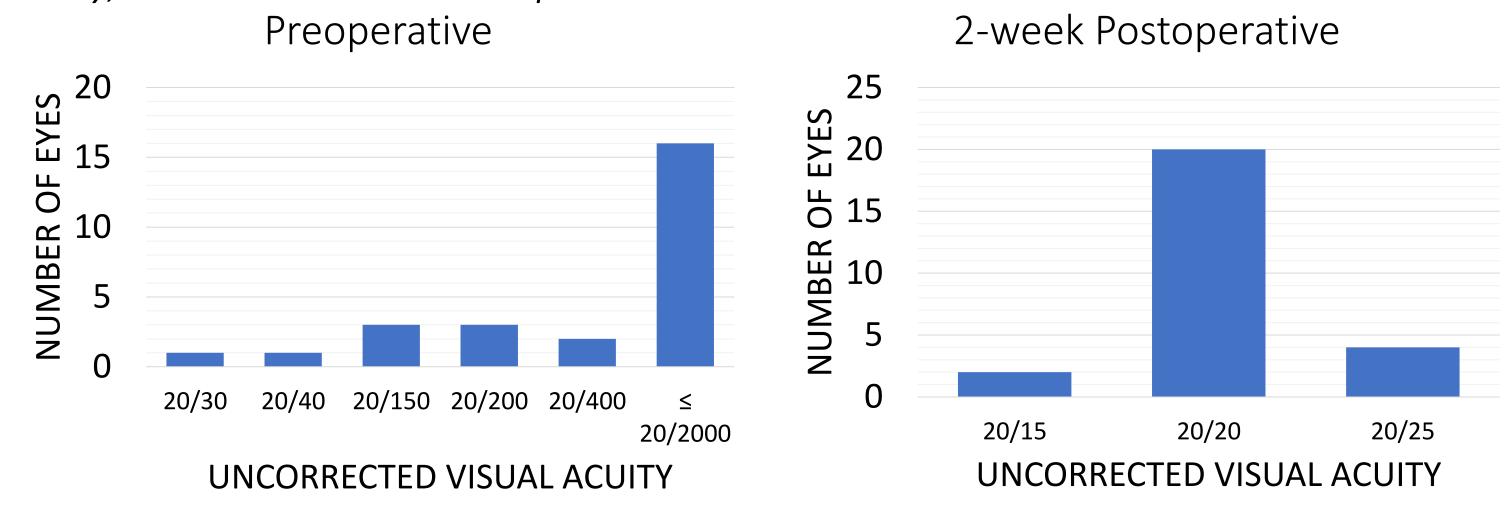
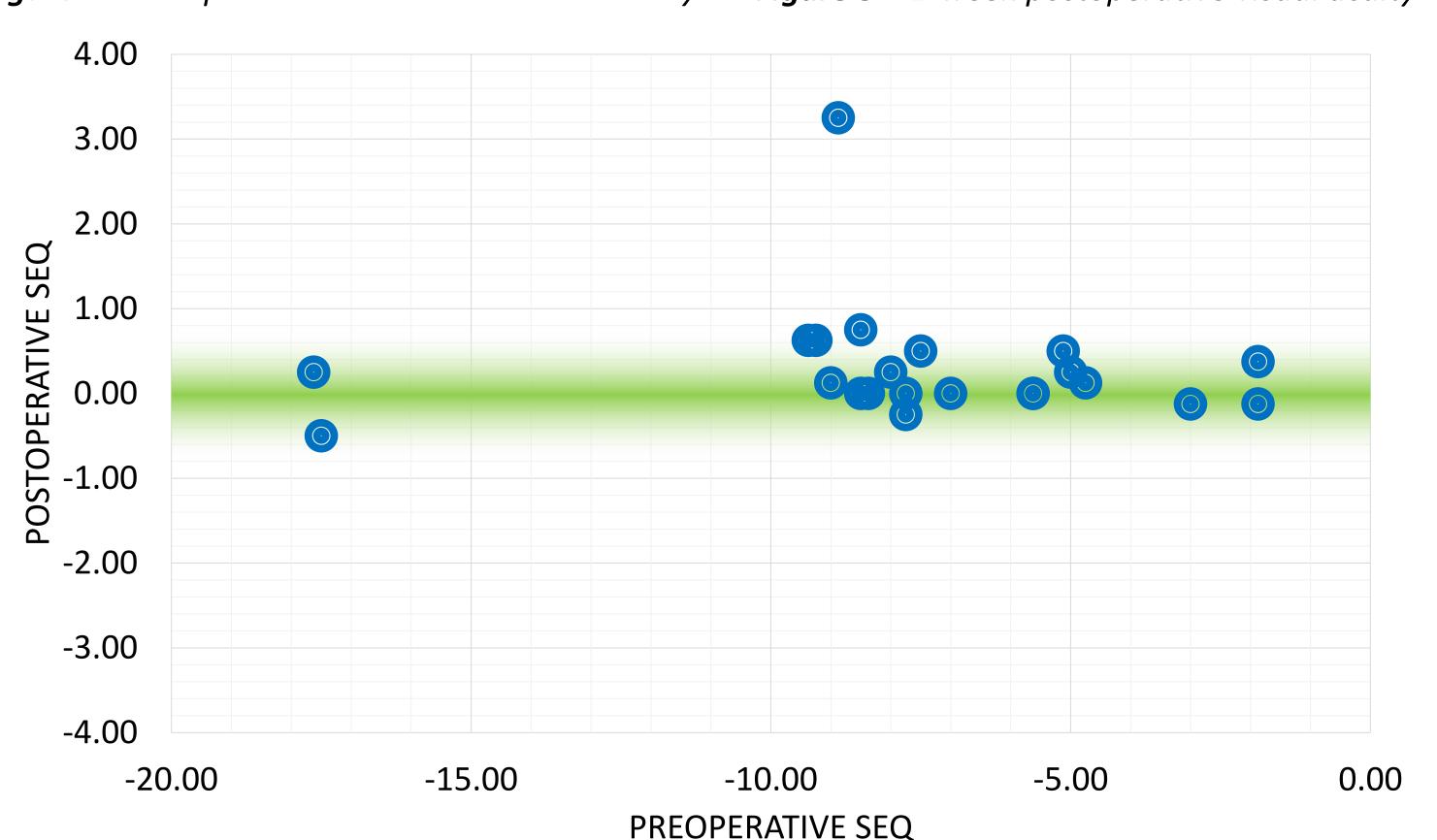



Figure 2 – Preoperative uncorrected visual acuity Figure 3 – 2-week postoperative visual acuity

Figure 4 – Preoperative Vs. 2-week postoperative refractive spherical equivalent. SEQ = Spherical equivalent

Safety

- There were no intraoperative complications reported.
- The most common postoperative complaint was the perception of halos, noted in 2/13 (15.4%) of patients.

Discussion and Conclusions

- The mean 2-week postoperative spherical equivalent was +0.30 ± 0.71 D, and the mean UCVA was 0.01 ± 0.06 logMAR.
- Only one patient had a refractive outcome outside of ± 1 diopter and was due to a prior acanthamoeba keratitis with paracentral scar. Postoperative UCVA in that eye still acheived 20/25.
- This study aligns with prior work which revealed similar findings of precise clinical outcomes, and biometric measurement accuracy with use of the Lenstar LS900[®]. ³⁻⁵
- Limitations to this study include a small sample size and a short duration of follow up.
- These findings support the use of the Lenstar LS900® keratometer for surgical planning in ICL implantation for predicable refractive outcomes and excellent postoperative visual acuity.

References

- 1. Hirnschall, N., Hoffmann, P. C., Draschl, P., Maedel, S., & Findl, O. (2014). Evaluation of factors influencing the remaining astigmatism after toric intraocular lens implantation. Journal of Refractive Surgery
- LENSTAR LS 900 | Haag-Streit USA. (n.d.). Retrieved May 10, 2021, from https://www.haag-
- streit.com/haag-streit-usa/products/haag-streit-diagnostics/lenstar-biometry/lenstar-ls-900/
 3. Gundersen, K. G., & Potvin, R. (2016). Clinical outcomes with toric intraocular lenses planned using an optical low coherence reflectometry ocular biometer with a new toric calculator. Clinical
- 4. Tappeiner, C., Rohrer, K., Frueh, B. E., Waelti, R., & Goldblum, D. (2010). Clinical comparison of biometry using the non-contact optical low coherence reflectometer (Lenstar LS 900) and contact ultrasound biometer (Tomey AL-3000) in cataract eyes. In British Journal of Ophthalmology
- 5. Li, J., Chen, H., Savini, G., Lu, W., Yu, X., Bao, F., Wang, Q., & Huang, J. (2016). Measurement agreement between a new biometer based on partial coherence interferometry and a validated biometer based on optical low-coherence reflectometry. Journal of Cataract and Refractive Surgery

²Vector Eye Centre, Calgary

³Division of Ophthalmology, Department of Surgery, University of Calgary